metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[(R)-1-phenylethylaminium] *u*-oxalato- $\kappa^4 O, O': O''O'''$ -bis[diaqua(oxalato- $\kappa^2 O, O'$)cobaltate(II)]

Xin Yang, Jiang Li, Hai-Wen Wang, Xin-Hua Zhao and Yong-Kui Shan*

Department of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China

Correspondence e-mail: ykshan@chem.ecnu.edu.cn

Received 31 March 2007; accepted 22 April 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.012 Å; R factor = 0.033; wR factor = 0.102; data-to-parameter ratio = 11.8.

The title compound, $(C_8H_{12}N)_2[Co_2(C_2O_4)_3(H_2O)_4]$, was prepared under hydrothermal conditions. The structure consists of chiral organic cations and complex anions. Hydrogen bonds and C-H··· π (aryl) interactions give a herring-bone arrangement of the cations along the *a* axis.

Related literature

For a related structure, see: Shan & Huang (2001).

Experimental

Crystal data

$(C_8H_{12}N)_2[Co_2(C_2O_4)_3(H_2O)_4]$
$M_r = 698.36$
Monoclinic, C2
a = 10.973 (2) Å
b = 7.5560 (15) Å
c = 17.067 (3) Å
$\beta = 90.33 \ (3)^{\circ}$

V = 1415.0 (5) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 1.25 \text{ mm}^{-1}$ T = 296 K0.24 \times 0.12 \times 0.04 mm

Data collection

```
Siemens SMART CCD
  diffractometer
Absorption correction: none
3658 measured reflections
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.102$	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.13	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
2268 reflections	Absolute structure: Flack (1983),
193 parameters	850 Friedel pairs
38 restraints	Flack parameter: 0.11 (3)

2268 independent reflections

 $R_{\rm int} = 0.020$

1938 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1−H1 <i>C</i> ···O4	0.89	1.95	2.843 (8)	176
$N1 - H1B \cdot \cdot \cdot O3^{i}$	0.89	2.05	2.918 (8)	166
$N1 - H1A \cdots O6^{ii}$	0.89	2.23	2.976 (7)	141
$N1 - H1A \cdots O5^{ii}$	0.89	2.21	2.973 (7)	143
$O8-H8B\cdots O2^{iii}$	0.93	1.81	2.737 (9)	172
$O8-H8A\cdots O1^{iv}$	0.96	1.77	2.728 (9)	172
$O7 - H7B \cdots O5^{v}$	0.90	1.82	2.678 (8)	157
$O7-H7A\cdots O6^{ii}$	0.94	1.81	2.712 (8)	159

Symmetry codes: (i) x, y - 1, z; (ii) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + 1$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 1;$ (v) $x + \frac{1}{2}, y + \frac{1}{2}, z.$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

We thank the National Natural Science Foundation of China (Grant No. 20273021) and Key Project of Shanghai Science and Technology Committee (Nos. 05JC14070, 06DZ05025) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2056).

References

Bruker (2001). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Shan, Y. K. & Huang, S. P. (2001). Z. Kristallogr. 216, 373-374.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, m1554 [doi:10.1107/S1600536807020016]

Bis[(*R*)-1-phenylethylaminium] μ -oxalato- $\kappa^4 O, O': O''O'''$ -bis[diaqua(oxalato- $\kappa^2 O, O'$)cobaltate(II)] X. Yang, J. Li, H.-W. Wang, X.-H. Zhao and Y.-K. Shan

Comment

The crystal structure of the title compound, (I)(Fig. 1), consists of bicobalt oxalate complex anions $[Co_2(C_2O_4)_3(H_2O)_4]^{2-}$ and organic cations $(C_8H_{12}N)^+$, joined into a two-dimensional sheet by hydrogen bonds. Owing to the presence of the chiral organic cation, the compound crystallizes in the polar space group C2. In the anion, there are two types of oxalates. One as tetradentate ligand bridges two Co atoms, each is coordinated by another type of oxalate as bidentate ligand in the same plane. Each Co atom is also bonded by two water molecules above and below the equatorial plane to produce a negative step-lamella. The bond angles around the Co atom range from 81.01 (9)° to 100.2 (2)°, and from 178.1 (2)° to 178.7 (2)°. The Co—O distances span from 2.062 (5)Å to 2.114 (3) Å. The organic cation contains a stereogenic center in its *R* configuration and has a normal structure similar to that described elsewhere (Shan & Huang, 2001). The cations are anchored in the pockets on the both faces of the puckered anionic lamella through hydrogen bonds with the distances ranging from 2.678 (8)Å to 2.976 (7)Å (Table 1), thus resulting in the formation of cation–anion–cation slab-sandwich layers with an arrangement of the cations held together by close C–H···π(aryl) interactions in a herring bone motif (Fig.2).

Experimental

Compound (I) was prepared by the hydrothermal reaction of $Co(C_2O_4) \cdot 2H_2O(0.130 \text{ g}, 0.71 \text{ mmol})$, (*R*)-(+)-1-phenylethylamine (0.062 g, 0.51 mmol) and water (0.6 ml) at 383 K for 3 d in a sealed thick-walled Pyrex tube. Light pink crystals of (I) were obtained in 40–50% yield.

Refinement

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å (aryl), 0.98Å (CH) and 0.96Å (CH₃) and N—H = 0.89 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$. H atoms on water molecules were located in a difference Fourier map and fixed with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figures

Fig. 1. The structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. [Symmetry code: (i) 1 - x, y, 1 - z.]

Fig. 2. A packing diagram of (I), showing the cation–anion–cation slab-sandwich layers with a herring-bone arrangement of the cations.

(*R*)-1-Phenylethylaminium μ -oxalato- $\kappa^4 O$, O': O''O'''-bis[diaqua(oxalato- $\kappa^2 O$, O')cobalt(II)]

 $F_{000} = 720$

 $D_{\rm x} = 1.639 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 4453 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 1.2-27.1^{\circ}$

 $\mu = 1.25 \text{ mm}^{-1}$ T = 296 K

 $0.24 \times 0.12 \times 0.04 \text{ mm}$

Plate, pink

Crystal data (C₈H₁₂N)₂[Co₂(C₂O₄)₃(H₂O)₄] $M_r = 698.36$ Monoclinic, C2 Hall symbol: C 2y a = 10.973 (2) Å b = 7.5560 (15) Å c = 17.067 (3) Å $\beta = 90.33$ (3)° V = 1415.0 (5) Å³ Z = 2

Data collection

Siemens Quantum CCD diffractometer	1938 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.020$
Monochromator: graphite	$\theta_{\text{max}} = 25.5^{\circ}$
T = 296 K	$\theta_{\min} = 1.2^{\circ}$
ω scans	$h = -13 \rightarrow 10$
Absorption correction: none	$k = -9 \rightarrow 8$
3658 measured reflections	$l = -20 \rightarrow 19$
2268 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2(F_o^2) + (0.0589P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.102$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.13	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
2268 reflections	$\Delta \rho_{min} = -0.52 \text{ e } \text{\AA}^{-3}$
193 parameters	Extinction correction: none
38 restraints	Absolute structure: Flack (1983), 850 Fridel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.11 (3)
0	

Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Со	0.29291 (4)	0.98018 (18)	0.41036 (3)	0.02253 (17)
01	0.4159 (6)	0.8027 (5)	0.4631 (3)	0.0242 (13)
O2	0.4163 (5)	1.1583 (6)	0.4624 (3)	0.0266 (13)
O3	0.1732 (5)	1.1586 (6)	0.3606 (3)	0.0262 (14)
O4	0.1735 (6)	0.8017 (6)	0.3563 (3)	0.0286 (15)
05	-0.0023 (6)	0.8057 (7)	0.2907 (3)	0.0379 (16)
O6	-0.0019 (5)	1.1607 (6)	0.2925 (3)	0.0341 (15)
07	0.3966 (2)	0.9858 (9)	0.30858 (15)	0.0317 (6)
H7A	0.4480	0.8882	0.2992	0.038*
H7B	0.4491	1.0760	0.3010	0.038*
08	0.1915 (2)	0.9809 (10)	0.51531 (15)	0.0314 (6)
H8A	0.1465	1.0892	0.5220	0.038*
H8B	0.1487	0.8760	0.5244	0.038*
N1	0.2561 (3)	0.4834 (10)	0.28541 (18)	0.0278 (7)
H1A	0.3371	0.4822	0.2833	0.042*
H1B	0.2306	0.3950	0.3156	0.042*
H1C	0.2312	0.5860	0.3054	0.042*
C1	0.5000	0.8799 (16)	0.5000	0.019 (2)
C2	0.5000	1.0861 (15)	0.5000	0.021 (3)
C4	0.0833 (8)	0.8815 (10)	0.3241 (4)	0.0194 (16)
C3	0.0844 (9)	1.0873 (11)	0.3269 (5)	0.0275 (19)
С9	0.3493 (6)	0.6631 (9)	0.1348 (3)	0.0599 (19)
Н9	0.4134	0.5978	0.1560	0.072*
C8	0.3753 (9)	0.8048 (11)	0.0842 (4)	0.081 (2)
H8	0.4553	0.8345	0.0722	0.098*
C7	0.2813 (10)	0.8964 (11)	0.0536 (5)	0.086 (3)
H7	0.2975	0.9898	0.0198	0.103*
C6	0.1660 (9)	0.8583 (11)	0.0701 (4)	0.083 (3)

supplementary materials

H6	0.1033	0.9241	0.0477	0.100*
C5	0.1388 (7)	0.7174 (10)	0.1216 (4)	0.067 (2)
H5	0.0582	0.6921	0.1337	0.080*
C10	0.2306 (8)	0.6182 (9)	0.1538 (4)	0.0395 (18)
C11	0.2044 (4)	0.4618 (12)	0.2043 (2)	0.0307 (12)
H11	0.1157	0.4517	0.2089	0.037*
C12	0.2513 (8)	0.2897 (8)	0.1688 (4)	0.045 (2)
H12A	0.2189	0.2763	0.1168	0.068*
H12B	0.2258	0.1917	0.2005	0.068*
H12C	0.3387	0.2928	0.1667	0.068*

Atomic displacement parameters $(Å^2)$

Co $0.0218 (3)$ $0.0158 (3)$ $0.0299 (3)$ $-0.0009 (6)$ $-0.00417 (19)$ $0.0013 (6)$ O1 $0.034 (3)$ $0.010 (3)$ $0.029 (3)$ $-0.001 (3)$ $-0.008 (3)$ $0.003 (2)$ O2 $0.018 (3)$ $0.023 (3)$ $0.039 (3)$ $0.002 (3)$ $-0.006 (2)$ $0.005 (3)$ O3 $0.023 (3)$ $0.016 (3)$ $0.038 (3)$ $-0.004 (2)$ $-0.007 (3)$ $0.002 (2)$ O4 $0.033 (4)$ $0.016 (3)$ $0.037 (3)$ $-0.001 (3)$ $-0.007 (3)$ $-0.001 (2)$ O5 $0.038 (4)$ $0.031 (4)$ $0.044 (3)$ $-0.004 (3)$ $-0.020 (3)$ $0.005 (3)$ O6 $0.032 (4)$ $0.021 (3)$ $0.050 (3)$ $0.010 (3)$ $-0.006 (3)$ $0.000 (3)$ O7 $0.0339 (13)$ $0.0203 (14)$ $0.0412 (15)$ $-0.001 (3)$ $0.0077 (11)$ $0.007 (3)$ O8 $0.0361 (13)$ $0.0150 (12)$ $0.0432 (15)$ $-0.001 (3)$ $0.0065 (13)$ $0.003 (4)$ C1 $0.011 (5)$ $0.029 (5)$ $0.017 (4)$ 0.000 $-0.001 (4)$ 0.000 C2 $0.030 (6)$ $0.005 (4)$ $0.029 (5)$ 0.000 $0.004 (5)$ 0.000 C4 $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $0.000 (3)$ C3 $0.039 (5)$ $0.015 (3)$ $0.029 (4)$ $0.004 (4)$ $0.002 (4)$ $-0.001 (3)$ C4 $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.002 (4)$ $-0.001 (3)$ C5 $0.039 (5)$ $0.070 (5)$ $0.037 (3)$		U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01 $0.034 (3)$ $0.010 (3)$ $0.029 (3)$ $-0.001 (3)$ $-0.008 (3)$ $0.003 (2)$ 02 $0.018 (3)$ $0.023 (3)$ $0.039 (3)$ $0.002 (3)$ $-0.006 (2)$ $0.005 (3)$ 03 $0.023 (3)$ $0.018 (3)$ $0.038 (3)$ $-0.004 (2)$ $-0.007 (3)$ $0.002 (2)$ 04 $0.033 (4)$ $0.016 (3)$ $0.037 (3)$ $-0.001 (3)$ $-0.007 (3)$ $-0.001 (2)$ 05 $0.038 (4)$ $0.031 (4)$ $0.044 (3)$ $-0.004 (3)$ $-0.020 (3)$ $0.005 (3)$ 06 $0.032 (4)$ $0.021 (3)$ $0.050 (3)$ $0.010 (3)$ $-0.006 (3)$ $0.000 (3)$ 07 $0.0339 (13)$ $0.0203 (14)$ $0.0412 (15)$ $-0.001 (3)$ $0.0077 (11)$ $0.007 (3)$ 08 $0.0361 (13)$ $0.0150 (12)$ $0.432 (15)$ $-0.001 (3)$ $0.005 (13)$ $0.003 (4)$ $C1$ $0.011 (5)$ $0.029 (5)$ $0.017 (4)$ 0.000 $-0.001 (4)$ 0.000 $C2$ $0.030 (6)$ $0.005 (4)$ $0.229 (5)$ 0.000 $0.004 (5)$ 0.000 $C4$ $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $0.000 (3)$ $C3$ $0.039 (5)$ $0.015 (3)$ $0.027 (3)$ $-0.033 (4)$ $-0.001 (3)$ $C4$ $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $C3$ $0.039 (5)$ $0.015 (3)$ $0.027 (3)$ $-0.003 (3)$ $-0.003 (3)$ $C3$ $0.039 (5)$ $0.015 (3)$ $0.027 (4)$ $-0.001 (3$	Co	0.0218 (3)	0.0158 (3)	0.0299 (3)	-0.0009 (6)	-0.00417 (19)	0.0013 (6)
02 0.018 (3) 0.023 (3) 0.039 (3) 0.002 (3) -0.006 (2) 0.005 (3) 03 0.023 (3) 0.018 (3) 0.038 (3) -0.004 (2) -0.007 (3) 0.002 (2) 04 0.033 (4) 0.016 (3) 0.037 (3) -0.001 (3) -0.007 (3) -0.001 (2) 05 0.038 (4) 0.031 (4) 0.044 (3) -0.004 (3) -0.020 (3) 0.005 (3) 06 0.032 (4) 0.021 (3) 0.050 (3) 0.010 (3) -0.006 (3) 0.000 (3) 07 0.0339 (13) 0.0203 (14) 0.0412 (15) -0.001 (3) 0.0077 (11) 0.007 (3) 08 0.0361 (13) 0.0150 (12) 0.0432 (15) -0.001 (3) 0.0063 (11) -0.002 (3) $N1$ 0.0297 (15) 0.0213 (15) 0.0323 (16) -0.002 (4) 0.0005 (13) 0.003 (4) $C1$ 0.011 (5) 0.029 (5) 0.017 (4) 0.000 -0.001 (4) 0.000 $C2$ 0.030 (6) 0.005 (4) 0.029 (5) 0.000 0.004 (5) 0.000 $C3$ 0.039 (5) 0.015 (3) 0.029 (4) 0.004 (4) 0.002 (4) -0.001 (3) $C3$ 0.039 (5) 0.015 (3) 0.029 (4) 0.004 (4) 0.002 (4) -0.001 (3) $C4$ 0.014 (4) 0.024 (4) 0.019 (4) 0.002 (4) -0.001 (3) $C5$ 0.086 (5) 0.062 (4) 0.056 (4) -0.032 (4) 0.003 (4) $C7$ 0.149 (7) 0.053 (4) 0	01	0.034 (3)	0.010 (3)	0.029 (3)	-0.001 (3)	-0.008 (3)	0.003 (2)
03 $0.023 (3)$ $0.018 (3)$ $0.038 (3)$ $-0.004 (2)$ $-0.007 (3)$ $0.002 (2)$ 04 $0.033 (4)$ $0.016 (3)$ $0.037 (3)$ $-0.001 (3)$ $-0.007 (3)$ $-0.001 (2)$ 05 $0.038 (4)$ $0.031 (4)$ $0.044 (3)$ $-0.004 (3)$ $-0.020 (3)$ $0.005 (3)$ 06 $0.032 (4)$ $0.021 (3)$ $0.050 (3)$ $0.010 (3)$ $-0.006 (3)$ $0.000 (3)$ 07 $0.0339 (13)$ $0.0203 (14)$ $0.0412 (15)$ $-0.001 (3)$ $0.0077 (11)$ $0.007 (3)$ 08 $0.0361 (13)$ $0.0150 (12)$ $0.0432 (15)$ $-0.001 (3)$ $0.0063 (11)$ $-0.002 (3)$ $N1$ $0.0297 (15)$ $0.021 (15)$ $0.0323 (16)$ $-0.002 (4)$ $0.0005 (13)$ $0.003 (4)$ $C1$ $0.011 (5)$ $0.029 (5)$ $0.017 (4)$ 0.000 $-0.001 (4)$ 0.000 $C2$ $0.030 (6)$ $0.005 (4)$ $0.029 (5)$ 0.000 $0.004 (5)$ 0.000 $C4$ $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $0.000 (3)$ $C3$ $0.039 (5)$ $0.015 (3)$ $0.029 (4)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ $C4$ $0.14 (4)$ $0.024 (4)$ $0.019 (4)$ $0.004 (4)$ $0.002 (4)$ $-0.001 (3)$ $C3$ $0.039 (5)$ $0.015 (3)$ $0.037 (3)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ $C4$ $0.14 (4)$ $0.024 (5)$ $0.033 (4)$ $-0.033 (4)$ $0.003 (4)$ $C5$ $0.086 (5)$ 0.06	O2	0.018 (3)	0.023 (3)	0.039 (3)	0.002 (3)	-0.006 (2)	0.005 (3)
04 $0.033 (4)$ $0.016 (3)$ $0.037 (3)$ $-0.001 (3)$ $-0.007 (3)$ $-0.001 (2)$ 05 $0.038 (4)$ $0.031 (4)$ $0.044 (3)$ $-0.004 (3)$ $-0.020 (3)$ $0.005 (3)$ 06 $0.032 (4)$ $0.021 (3)$ $0.050 (3)$ $0.010 (3)$ $-0.006 (3)$ $0.000 (3)$ 07 $0.0339 (13)$ $0.0203 (14)$ $0.0412 (15)$ $-0.001 (3)$ $0.0077 (11)$ $0.007 (3)$ 08 $0.0361 (13)$ $0.0150 (12)$ $0.0432 (15)$ $-0.001 (3)$ $0.0063 (11)$ $-0.002 (3)$ $N1$ $0.0297 (15)$ $0.0213 (15)$ $0.0323 (16)$ $-0.002 (4)$ $0.0005 (13)$ $0.003 (4)$ $C1$ $0.011 (5)$ $0.029 (5)$ $0.017 (4)$ 0.000 $-0.001 (4)$ 0.000 $C2$ $0.030 (6)$ $0.005 (4)$ $0.029 (5)$ 0.000 $0.004 (5)$ 0.000 $C4$ $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $0.000 (3)$ $C3$ $0.39 (5)$ $0.015 (3)$ $0.29 (4)$ $0.004 (4)$ $0.002 (4)$ $-0.001 (3)$ $C9$ $0.073 (5)$ $0.070 (5)$ $0.37 (3)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ $C8$ $0.109 (6)$ $0.82 (5)$ $0.053 (4)$ $-0.013 (5)$ $0.007 (5)$ $-0.001 (3)$ $C7$ $0.149 (7)$ $0.053 (4)$ $0.056 (4)$ $-0.013 (5)$ $0.007 (5)$ $-0.001 (3)$ $C6$ $0.132 (7)$ $0.062 (4)$ $0.056 (4)$ $0.033 (4)$ $-0.003 (4)$ $0.009 (4)$ $C10$ 0.0	O3	0.023 (3)	0.018 (3)	0.038 (3)	-0.004 (2)	-0.007 (3)	0.002 (2)
05 $0.038 (4)$ $0.031 (4)$ $0.044 (3)$ $-0.004 (3)$ $-0.020 (3)$ $0.005 (3)$ 06 $0.032 (4)$ $0.021 (3)$ $0.050 (3)$ $0.010 (3)$ $-0.006 (3)$ $0.000 (3)$ 07 $0.0339 (13)$ $0.0203 (14)$ $0.0412 (15)$ $-0.001 (3)$ $0.0077 (11)$ $0.007 (3)$ 08 $0.0361 (13)$ $0.0150 (12)$ $0.0432 (15)$ $-0.001 (3)$ $0.0063 (11)$ $-0.002 (3)$ $N1$ $0.0297 (15)$ $0.0213 (15)$ $0.0323 (16)$ $-0.002 (4)$ $0.0005 (13)$ $0.003 (4)$ $C1$ $0.011 (5)$ $0.029 (5)$ $0.017 (4)$ 0.000 $-0.001 (4)$ 0.000 $C2$ $0.030 (6)$ $0.005 (4)$ $0.029 (5)$ 0.000 $0.004 (5)$ 0.000 $C4$ $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $0.000 (3)$ $C3$ $0.039 (5)$ $0.015 (3)$ $0.029 (4)$ $0.004 (4)$ $0.002 (4)$ $-0.001 (3)$ $C9$ $0.073 (5)$ $0.070 (5)$ $0.037 (3)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ $C8$ $0.109 (6)$ $0.882 (5)$ $0.053 (4)$ $-0.043 (5)$ $0.008 (4)$ $0.003 (4)$ $C7$ $0.149 (7)$ $0.053 (4)$ $0.056 (4)$ $-0.010 (5)$ $0.007 (5)$ $-0.001 (3)$ $C6$ $0.132 (7)$ $0.062 (4)$ $0.056 (4)$ $0.045 (5)$ $-0.011 (5)$ $0.010 (4)$ $C5$ $0.086 (5)$ $0.064 (4)$ $0.050 (4)$ $0.038 (4)$ $-0.003 (4)$ $0.009 (4)$ $C10$ $0.$	O4	0.033 (4)	0.016 (3)	0.037 (3)	-0.001 (3)	-0.007 (3)	-0.001 (2)
06 $0.032 (4)$ $0.021 (3)$ $0.050 (3)$ $0.010 (3)$ $-0.006 (3)$ $0.000 (3)$ 07 $0.0339 (13)$ $0.0203 (14)$ $0.0412 (15)$ $-0.001 (3)$ $0.0077 (11)$ $0.007 (3)$ 08 $0.0361 (13)$ $0.0150 (12)$ $0.0432 (15)$ $-0.001 (3)$ $0.0063 (11)$ $-0.002 (3)$ $N1$ $0.0297 (15)$ $0.0213 (15)$ $0.0323 (16)$ $-0.002 (4)$ $0.0005 (13)$ $0.003 (4)$ $C1$ $0.011 (5)$ $0.029 (5)$ $0.017 (4)$ 0.000 $-0.001 (4)$ 0.000 $C2$ $0.030 (6)$ $0.005 (4)$ $0.029 (5)$ 0.000 $0.004 (5)$ 0.000 $C4$ $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $0.000 (3)$ $C3$ $0.039 (5)$ $0.015 (3)$ $0.029 (4)$ $0.004 (4)$ $0.002 (4)$ $-0.001 (3)$ $C9$ $0.073 (5)$ $0.070 (5)$ $0.037 (3)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ $C8$ $0.109 (6)$ $0.82 (5)$ $0.053 (4)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ $C7$ $0.149 (7)$ $0.053 (4)$ $0.056 (4)$ $-0.010 (5)$ $0.007 (5)$ $-0.001 (3)$ $C6$ $0.132 (7)$ $0.062 (4)$ $0.056 (4)$ $0.045 (5)$ $-0.011 (5)$ $0.010 (4)$ $C5$ $0.086 (5)$ $0.064 (4)$ $0.050 (4)$ $0.038 (4)$ $-0.003 (4)$ $0.009 (4)$ $C10$ $0.055 (4)$ $0.031 (4)$ $0.034 (2)$ $-0.005 (3)$ $-0.0019 (3)$ $C11$ $0.0267 (18)$	O5	0.038 (4)	0.031 (4)	0.044 (3)	-0.004 (3)	-0.020 (3)	0.005 (3)
07 $0.0339 (13)$ $0.0203 (14)$ $0.0412 (15)$ $-0.001 (3)$ $0.0077 (11)$ $0.007 (3)$ 08 $0.0361 (13)$ $0.0150 (12)$ $0.0432 (15)$ $-0.001 (3)$ $0.0063 (11)$ $-0.002 (3)$ $N1$ $0.0297 (15)$ $0.0213 (15)$ $0.0323 (16)$ $-0.002 (4)$ $0.0005 (13)$ $0.003 (4)$ $C1$ $0.011 (5)$ $0.029 (5)$ $0.017 (4)$ 0.000 $-0.001 (4)$ 0.000 $C2$ $0.030 (6)$ $0.005 (4)$ $0.029 (5)$ 0.000 $0.004 (5)$ 0.000 $C4$ $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $0.000 (3)$ $C3$ $0.039 (5)$ $0.015 (3)$ $0.029 (4)$ $0.004 (4)$ $0.002 (4)$ $-0.001 (3)$ $C9$ $0.073 (5)$ $0.070 (5)$ $0.037 (3)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ $C8$ $0.109 (6)$ $0.82 (5)$ $0.053 (4)$ $-0.043 (5)$ $0.008 (4)$ $0.003 (4)$ $C7$ $0.149 (7)$ $0.053 (4)$ $0.056 (4)$ $-0.010 (5)$ $0.007 (5)$ $-0.001 (3)$ $C6$ $0.132 (7)$ $0.062 (4)$ $0.056 (4)$ $0.038 (4)$ $-0.003 (4)$ $0.009 (4)$ $C10$ $0.055 (4)$ $0.031 (4)$ $0.033 (3)$ $-0.003 (3)$ $-0.001 (3)$ $C11$ $0.0267 (18)$ $0.032 (4)$ $0.034 (2)$ $-0.005 (3)$ $-0.0019 (16)$ $0.001 (3)$	O6	0.032 (4)	0.021 (3)	0.050 (3)	0.010 (3)	-0.006 (3)	0.000 (3)
08 $0.0361 (13)$ $0.0150 (12)$ $0.0432 (15)$ $-0.001 (3)$ $0.0063 (11)$ $-0.002 (3)$ N1 $0.0297 (15)$ $0.0213 (15)$ $0.0323 (16)$ $-0.002 (4)$ $0.0005 (13)$ $0.003 (4)$ C1 $0.011 (5)$ $0.029 (5)$ $0.017 (4)$ 0.000 $-0.001 (4)$ 0.000 C2 $0.030 (6)$ $0.005 (4)$ $0.029 (5)$ 0.000 $0.004 (5)$ 0.000 C4 $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $0.000 (3)$ C3 $0.039 (5)$ $0.015 (3)$ $0.029 (4)$ $0.004 (4)$ $0.002 (4)$ $-0.001 (3)$ C9 $0.073 (5)$ $0.070 (5)$ $0.037 (3)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ C8 $0.109 (6)$ $0.082 (5)$ $0.053 (4)$ $-0.043 (5)$ $0.008 (4)$ $0.003 (4)$ C7 $0.149 (7)$ $0.053 (4)$ $0.056 (4)$ $-0.010 (5)$ $0.007 (5)$ $-0.001 (3)$ C6 $0.132 (7)$ $0.062 (4)$ $0.056 (4)$ $0.045 (5)$ $-0.011 (5)$ $0.010 (4)$ C5 $0.086 (5)$ $0.064 (4)$ $0.050 (4)$ $0.038 (4)$ $-0.003 (4)$ $0.009 (4)$ C10 $0.055 (4)$ $0.031 (4)$ $0.033 (3)$ $-0.003 (3)$ $-0.007 (3)$ $-0.008 (3)$ C11 $0.0267 (18)$ $0.032 (4)$ $0.034 (2)$ $-0.005 (3)$ $-0.0019 (16)$ $-0.010 (3)$	O7	0.0339 (13)	0.0203 (14)	0.0412 (15)	-0.001 (3)	0.0077 (11)	0.007 (3)
N1 $0.0297 (15)$ $0.0213 (15)$ $0.0323 (16)$ $-0.002 (4)$ $0.0005 (13)$ $0.003 (4)$ C1 $0.011 (5)$ $0.029 (5)$ $0.017 (4)$ 0.000 $-0.001 (4)$ 0.000 C2 $0.030 (6)$ $0.005 (4)$ $0.029 (5)$ 0.000 $0.004 (5)$ 0.000 C4 $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $0.000 (3)$ C3 $0.039 (5)$ $0.015 (3)$ $0.029 (4)$ $0.004 (4)$ $0.002 (4)$ $-0.001 (3)$ C9 $0.073 (5)$ $0.070 (5)$ $0.037 (3)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ C8 $0.109 (6)$ $0.082 (5)$ $0.053 (4)$ $-0.043 (5)$ $0.008 (4)$ $0.003 (4)$ C7 $0.149 (7)$ $0.053 (4)$ $0.056 (4)$ $-0.010 (5)$ $0.007 (5)$ $-0.001 (3)$ C6 $0.132 (7)$ $0.062 (4)$ $0.056 (4)$ $0.045 (5)$ $-0.011 (5)$ $0.010 (4)$ C5 $0.086 (5)$ $0.064 (4)$ $0.050 (4)$ $0.038 (4)$ $-0.003 (4)$ $0.009 (4)$ C10 $0.055 (4)$ $0.031 (4)$ $0.033 (3)$ $-0.003 (3)$ $-0.007 (3)$ $-0.008 (3)$ C11 $0.0267 (18)$ $0.032 (4)$ $0.034 (2)$ $-0.005 (3)$ $-0.0019 (16)$ $0.001 (3)$	08	0.0361 (13)	0.0150 (12)	0.0432 (15)	-0.001 (3)	0.0063 (11)	-0.002 (3)
C1 $0.011 (5)$ $0.029 (5)$ $0.017 (4)$ 0.000 $-0.001 (4)$ 0.000 C2 $0.030 (6)$ $0.005 (4)$ $0.029 (5)$ 0.000 $0.004 (5)$ 0.000 C4 $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $0.000 (3)$ C3 $0.039 (5)$ $0.015 (3)$ $0.029 (4)$ $0.004 (4)$ $0.002 (4)$ $-0.001 (3)$ C9 $0.073 (5)$ $0.070 (5)$ $0.037 (3)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ C8 $0.109 (6)$ $0.082 (5)$ $0.053 (4)$ $-0.043 (5)$ $0.007 (5)$ $-0.001 (3)$ C7 $0.149 (7)$ $0.053 (4)$ $0.056 (4)$ $-0.010 (5)$ $0.007 (5)$ $-0.001 (3)$ C6 $0.132 (7)$ $0.062 (4)$ $0.056 (4)$ $0.045 (5)$ $-0.011 (5)$ $0.010 (4)$ C5 $0.086 (5)$ $0.064 (4)$ $0.050 (4)$ $0.038 (4)$ $-0.003 (4)$ $0.009 (4)$ C10 $0.055 (4)$ $0.031 (4)$ $0.034 (2)$ $-0.005 (3)$ $-0.0019 (16)$ $0.001 (3)$ C11 $0.0267 (18)$ $0.032 (4)$ $0.034 (4)$ $0.002 (4)$ $-0.003 (4)$ $-0.010 (3)$	N1	0.0297 (15)	0.0213 (15)	0.0323 (16)	-0.002 (4)	0.0005 (13)	0.003 (4)
C2 $0.030 (6)$ $0.005 (4)$ $0.029 (5)$ 0.000 $0.004 (5)$ 0.000 C4 $0.014 (4)$ $0.024 (4)$ $0.019 (4)$ $0.001 (3)$ $-0.002 (3)$ $0.000 (3)$ C3 $0.039 (5)$ $0.015 (3)$ $0.029 (4)$ $0.004 (4)$ $0.002 (4)$ $-0.001 (3)$ C9 $0.073 (5)$ $0.070 (5)$ $0.037 (3)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ C8 $0.109 (6)$ $0.082 (5)$ $0.053 (4)$ $-0.043 (5)$ $0.008 (4)$ $0.003 (4)$ C7 $0.149 (7)$ $0.053 (4)$ $0.056 (4)$ $-0.010 (5)$ $0.007 (5)$ $-0.001 (3)$ C6 $0.132 (7)$ $0.062 (4)$ $0.056 (4)$ $0.045 (5)$ $-0.011 (5)$ $0.010 (4)$ C5 $0.086 (5)$ $0.064 (4)$ $0.050 (4)$ $0.038 (4)$ $-0.003 (4)$ $0.009 (4)$ C10 $0.055 (4)$ $0.031 (4)$ $0.034 (2)$ $-0.005 (3)$ $-0.0019 (16)$ $0.001 (3)$ C12 $0.076 (5)$ $0.027 (4)$ $0.033 (4)$ $0.002 (4)$ $-0.003 (4)$ $-0.010 (3)$	C1	0.011 (5)	0.029 (5)	0.017 (4)	0.000	-0.001 (4)	0.000
C4 0.014 (4) 0.024 (4) 0.019 (4) 0.001 (3) -0.002 (3) 0.000 (3)C3 0.039 (5) 0.015 (3) 0.029 (4) 0.004 (4) 0.002 (4) -0.001 (3)C9 0.073 (5) 0.070 (5) 0.037 (3) -0.032 (4) 0.000 (3) 0.005 (3)C8 0.109 (6) 0.082 (5) 0.053 (4) -0.043 (5) 0.008 (4) 0.003 (4)C7 0.149 (7) 0.053 (4) 0.056 (4) -0.010 (5) 0.007 (5) -0.001 (3)C6 0.132 (7) 0.062 (4) 0.056 (4) 0.045 (5) -0.011 (5) 0.010 (4)C5 0.086 (5) 0.064 (4) 0.050 (4) 0.038 (4) -0.003 (4) 0.009 (4)C10 0.055 (4) 0.031 (4) 0.033 (3) -0.003 (3) -0.001 (3) -0.008 (3)C11 0.0267 (18) 0.032 (4) 0.034 (2) -0.005 (3) -0.0019 (16) 0.001 (3)	C2	0.030 (6)	0.005 (4)	0.029 (5)	0.000	0.004 (5)	0.000
C3 $0.039(5)$ $0.015(3)$ $0.029(4)$ $0.004(4)$ $0.002(4)$ $-0.001(3)$ C9 $0.073(5)$ $0.070(5)$ $0.037(3)$ $-0.032(4)$ $0.000(3)$ $0.005(3)$ C8 $0.109(6)$ $0.082(5)$ $0.053(4)$ $-0.043(5)$ $0.008(4)$ $0.003(4)$ C7 $0.149(7)$ $0.053(4)$ $0.056(4)$ $-0.010(5)$ $0.007(5)$ $-0.001(3)$ C6 $0.132(7)$ $0.062(4)$ $0.056(4)$ $0.045(5)$ $-0.011(5)$ $0.010(4)$ C5 $0.086(5)$ $0.064(4)$ $0.050(4)$ $0.038(4)$ $-0.003(4)$ $0.009(4)$ C10 $0.055(4)$ $0.031(4)$ $0.034(2)$ $-0.005(3)$ $-0.0019(16)$ $0.001(3)$ C12 $0.076(5)$ $0.027(4)$ $0.033(4)$ $0.002(4)$ $-0.003(4)$ $-0.010(3)$	C4	0.014 (4)	0.024 (4)	0.019 (4)	0.001 (3)	-0.002 (3)	0.000 (3)
C9 $0.073 (5)$ $0.070 (5)$ $0.037 (3)$ $-0.032 (4)$ $0.000 (3)$ $0.005 (3)$ C8 $0.109 (6)$ $0.082 (5)$ $0.053 (4)$ $-0.043 (5)$ $0.008 (4)$ $0.003 (4)$ C7 $0.149 (7)$ $0.053 (4)$ $0.056 (4)$ $-0.010 (5)$ $0.007 (5)$ $-0.001 (3)$ C6 $0.132 (7)$ $0.062 (4)$ $0.056 (4)$ $0.045 (5)$ $-0.011 (5)$ $0.010 (4)$ C5 $0.086 (5)$ $0.064 (4)$ $0.050 (4)$ $0.038 (4)$ $-0.003 (4)$ $0.009 (4)$ C10 $0.055 (4)$ $0.031 (4)$ $0.033 (3)$ $-0.003 (3)$ $-0.007 (3)$ $-0.008 (3)$ C11 $0.0267 (18)$ $0.032 (4)$ $0.033 (4)$ $0.002 (4)$ $-0.003 (4)$ $-0.010 (3)$	C3	0.039 (5)	0.015 (3)	0.029 (4)	0.004 (4)	0.002 (4)	-0.001 (3)
C8 $0.109 (6)$ $0.082 (5)$ $0.053 (4)$ $-0.043 (5)$ $0.008 (4)$ $0.003 (4)$ C7 $0.149 (7)$ $0.053 (4)$ $0.056 (4)$ $-0.010 (5)$ $0.007 (5)$ $-0.001 (3)$ C6 $0.132 (7)$ $0.062 (4)$ $0.056 (4)$ $0.045 (5)$ $-0.011 (5)$ $0.010 (4)$ C5 $0.086 (5)$ $0.064 (4)$ $0.050 (4)$ $0.038 (4)$ $-0.003 (4)$ $0.009 (4)$ C10 $0.055 (4)$ $0.031 (4)$ $0.033 (3)$ $-0.003 (3)$ $-0.007 (3)$ $-0.008 (3)$ C11 $0.0267 (18)$ $0.032 (4)$ $0.033 (4)$ $0.002 (4)$ $-0.003 (4)$ $-0.010 (3)$	C9	0.073 (5)	0.070 (5)	0.037 (3)	-0.032 (4)	0.000 (3)	0.005 (3)
C7 $0.149(7)$ $0.053(4)$ $0.056(4)$ $-0.010(5)$ $0.007(5)$ $-0.001(3)$ C6 $0.132(7)$ $0.062(4)$ $0.056(4)$ $0.045(5)$ $-0.011(5)$ $0.010(4)$ C5 $0.086(5)$ $0.064(4)$ $0.050(4)$ $0.038(4)$ $-0.003(4)$ $0.009(4)$ C10 $0.055(4)$ $0.031(4)$ $0.033(3)$ $-0.003(3)$ $-0.007(3)$ $-0.008(3)$ C11 $0.0267(18)$ $0.032(4)$ $0.034(2)$ $-0.005(3)$ $-0.0019(16)$ $0.001(3)$ C12 $0.076(5)$ $0.027(4)$ $0.033(4)$ $0.002(4)$ $-0.003(4)$ $-0.010(3)$	C8	0.109 (6)	0.082 (5)	0.053 (4)	-0.043 (5)	0.008 (4)	0.003 (4)
C6 0.132 (7) 0.062 (4) 0.056 (4) 0.045 (5) -0.011 (5) 0.010 (4)C5 0.086 (5) 0.064 (4) 0.050 (4) 0.038 (4) -0.003 (4) 0.009 (4)C10 0.055 (4) 0.031 (4) 0.033 (3) -0.003 (3) -0.007 (3) -0.008 (3)C11 0.0267 (18) 0.032 (4) 0.034 (2) -0.005 (3) -0.0019 (16) 0.001 (3)C12 0.076 (5) 0.027 (4) 0.033 (4) 0.002 (4) -0.003 (4) -0.010 (3)	C7	0.149 (7)	0.053 (4)	0.056 (4)	-0.010 (5)	0.007 (5)	-0.001 (3)
C5 $0.086(5)$ $0.064(4)$ $0.050(4)$ $0.038(4)$ $-0.003(4)$ $0.009(4)$ C10 $0.055(4)$ $0.031(4)$ $0.033(3)$ $-0.003(3)$ $-0.007(3)$ $-0.008(3)$ C11 $0.0267(18)$ $0.032(4)$ $0.034(2)$ $-0.005(3)$ $-0.0019(16)$ $0.001(3)$ C12 $0.076(5)$ $0.027(4)$ $0.033(4)$ $0.002(4)$ $-0.003(4)$ $-0.010(3)$	C6	0.132 (7)	0.062 (4)	0.056 (4)	0.045 (5)	-0.011 (5)	0.010 (4)
C10 $0.055(4)$ $0.031(4)$ $0.033(3)$ $-0.003(3)$ $-0.007(3)$ $-0.008(3)$ C11 $0.0267(18)$ $0.032(4)$ $0.034(2)$ $-0.005(3)$ $-0.0019(16)$ $0.001(3)$ C12 $0.076(5)$ $0.027(4)$ $0.033(4)$ $0.002(4)$ $-0.003(4)$ $-0.010(3)$	C5	0.086 (5)	0.064 (4)	0.050 (4)	0.038 (4)	-0.003 (4)	0.009 (4)
C11 0.0267 (18) 0.032 (4) 0.034 (2) -0.005 (3) -0.0019 (16) 0.001 (3) C12 0.076 (5) 0.027 (4) 0.033 (4) 0.002 (4) -0.003 (4) -0.019 (16)	C10	0.055 (4)	0.031 (4)	0.033 (3)	-0.003 (3)	-0.007 (3)	-0.008 (3)
C12 0.076 (5) 0.027 (4) 0.033 (4) 0.002 (4) $-0.003 (4) -0.010 (3)$	C11	0.0267 (18)	0.032 (4)	0.034 (2)	-0.005 (3)	-0.0019 (16)	0.001 (3)
	C12	0.076 (5)	0.027 (4)	0.033 (4)	0.002 (4)	-0.003 (4)	-0.010 (3)

Geometric parameters (Å, °)

Co—O3	2.062 (5)	C1—C2	1.558 (6)
Co—O7	2.083 (3)	C2—O2 ⁱ	1.243 (7)
Co—O4	2.091 (5)	C4—C3	1.556 (5)
Co—O1	2.102 (5)	C9—C10	1.387 (10)
Co—O2	2.103 (6)	С9—С8	1.406 (10)
Co—O8	2.114 (3)	С9—Н9	0.9300
O1—C1	1.257 (8)	C8—C7	1.345 (12)
O2—C2	1.243 (7)	С8—Н8	0.9300
O3—C3	1.250 (10)	C7—C6	1.329 (12)

O4—C4	1.281 (9)	С7—Н7	0.9300
O5—C4	1.237 (9)	C6—C5	1.414 (11)
O6—C3	1.242 (10)	С6—Н6	0.9300
07—Н7А	0.9420	C5—C10	1.368 (10)
07—Н7В	0.9020	С5—Н5	0.9300
O8—H8A	0.9630	C10—C11	1.491 (11)
O8—H8B	0.9349	C11—C12	1.525 (11)
N1—C11	1.503 (5)	C11—H11	0.9800
N1—H1A	0.8900	C12—H12A	0.9600
N1—H1B	0.8900	C12—H12B	0.9600
N1—H1C	0.8900	C12—H12C	0.9600
C101 ⁱ	1.257 (8)		
O3—Co—O7	89.6 (2)	O5—C4—O4	124.3 (8)
O3—Co—O4	81.01 (9)	O5—C4—C3	118.9 (9)
O7—Co—O4	89.4 (2)	O4—C4—C3	116.8 (9)
O3—Co—O1	178.7 (2)	O6—C3—O3	128.0 (8)
O7—Co—O1	91.0 (2)	O6—C3—C4	115.2 (9)
O4—Co—O1	100.2 (2)	O3—C3—C4	116.8 (9)
O3—Co—O2	99.4 (2)	C10—C9—C8	121.6 (8)
O7—Co—O2	89.2 (2)	С10—С9—Н9	119.2
O4—Co—O2	178.5 (3)	С8—С9—Н9	119.2
O1—Co—O2	79.45 (9)	С7—С8—С9	118.2 (8)
O3—Co—O8	90.6 (2)	С7—С8—Н8	120.9
O7—Co—O8	178.1 (2)	С9—С8—Н8	120.9
O4—Co—O8	92.5 (2)	C6—C7—C8	122.4 (8)
O1—Co—O8	88.7 (2)	С6—С7—Н7	118.8
O2—Co—O8	88.9 (2)	С8—С7—Н7	118.8
C1—O1—Co	112.7 (6)	C7—C6—C5	119.9 (8)
С2—О2—Со	114.2 (6)	С7—С6—Н6	120.0
С3—О3—Со	113.6 (5)	С5—С6—Н6	120.0
C4—O4—Co	111.5 (5)	C10—C5—C6	120.4 (8)
Со—О7—Н7А	117.1	С10—С5—Н5	119.8
Co—O7—H7B	119.1	С6—С5—Н5	119.8
H7A—O7—H7B	100.6	C5—C10—C9	117.5 (7)
Co—O8—H8A	112.0	C5—C10—C11	121.5 (7)
Co—O8—H8B	113.9	C9—C10—C11	120.9 (7)
H8A—O8—H8B	116.2	C10—C11—N1	111.9 (6)
C11—N1—H1A	109.5	C10—C11—C12	112.3 (4)
C11—N1—H1B	109.5	N1—C11—C12	109.4 (6)
H1A—N1—H1B	109.5	C10—C11—H11	107.7
C11—N1—H1C	109.5	N1—C11—H11	107.7
H1A—N1—H1C	109.5	C12—C11—H11	107.7
H1B—N1—H1C	109.5	C11—C12—H12A	109.5
01—C1—O1 ⁱ	124.7 (12)	C11—C12—H12B	109.5
O1—C1—C2	117.6 (6)	H12A—C12—H12B	109.5
01 ⁱ —C1—C2	117.6 (6)	C11—C12—H12C	109.5
$O2^{i}$ —C2—O2	128.0 (12)	H12A—C12—H12C	109.5
O2 ⁱ —C2—C1	116.0 (6)	H12B—C12—H12C	109.5

supplementary materials

O2—C2—C1 116.0 (6) Symmetry codes: (i) -*x*+1, *y*, -*z*+1.

Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1C···O4	0.89	1.95	2.843 (8)	176
N1—H1B···O3 ⁱⁱ	0.89	2.05	2.918 (8)	166
N1—H1A···O6 ⁱⁱⁱ	0.89	2.23	2.976 (7)	141
N1—H1A···O5 ⁱⁱⁱ	0.89	2.21	2.973 (7)	143
O8—H8B···O2 ^{iv}	0.93	1.81	2.737 (9)	172
O8—H8A···O1 ^v	0.96	1.77	2.728 (9)	172
O7—H7B···O5 ^{vi}	0.90	1.82	2.678 (8)	157
O7—H7A···O6 ⁱⁱⁱ	0.94	1.81	2.712 (8)	159
Symmetry codes: (ii) <i>x</i> , <i>y</i> –1, <i>z</i> ; (iii) <i>x</i> +1/2, <i>y</i>	-1/2, z; (iv) $-x+1/2, y-$	1/2, -z+1; (v) -x+1/2	2, $y+1/2$, $-z+1$; (vi) $x+$	1/2, y+1/2, z.

